Juama Garrido
Diseñador, músico y viceversa. Hago cosas.
Cassandra is the protagonist of one of the bitterest stories in Greek mythology. Apollo, god of the Sun, knowledge and truth—among many other things—fell in love with her and gave her the gift of prophecy, seeking with that divine gift to win her affection. Cassandra did not return Apollo’s love, and he, now a god [...]

How might we accelerate towards a biosolar civilization? Can we lead the way towards a Material Transition?

¿Por qué aspirar a una civilización biosolar y cómo empezamos a construirla? ¿Podemos ser protagonistas de una Transición Material?

Cassandra es la protagonista de una de las historias más amargas de la mitología griega. Apolo, dios del Sol, el conocimiento y la verdad —entre muchas otras— se enamoró de ella y le regaló el don de la profecía, buscando con ese regalo divino ganar su afecto. Cassandra no correspondió al amor de Apolo, y [...]

Si pudiéramos mirar un átomo por dentro, veríamos que todos los elementos de la tabla están compuestos internamente por las mismas partículas: protones y neutrones en el núcleo, y electrones orbitando alrededor en nubes de probabilidad. La diferencia entre los distintos elementos, además de las que se observan macroscópicamente, es la cantidad de protones que [...]

Si pudiéramos mirar un átomo por dentro, veríamos que todos los elementos de la tabla están compuestos internamente por las mismas partículas: protones y neutrones en el núcleo, y electrones orbitando alrededor en nubes de probabilidad. La diferencia entre los distintos elementos, además de las que se observan macroscópicamente, es la cantidad de protones que [...]

Si pudiéramos mirar un átomo por dentro, veríamos que todos los elementos de la tabla están compuestos internamente por las mismas partículas: protones y neutrones en el núcleo, y electrones orbitando alrededor en nubes de probabilidad. La diferencia entre los distintos elementos, además de las que se observan macroscópicamente, es la cantidad de protones que [...]

Si pudiéramos mirar un átomo por dentro, veríamos que todos los elementos de la tabla están compuestos internamente por las mismas partículas: protones y neutrones en el núcleo, y electrones orbitando alrededor en nubes de probabilidad. La diferencia entre los distintos elementos, además de las que se observan macroscópicamente, es la cantidad de protones que [...]

Si pudiéramos mirar un átomo por dentro, veríamos que todos los elementos de la tabla están compuestos internamente por las mismas partículas: protones y neutrones en el núcleo, y electrones orbitando alrededor en nubes de probabilidad. La diferencia entre los distintos elementos, además de las que se observan macroscópicamente, es la cantidad de protones que [...]

Si pudiéramos mirar un átomo por dentro, veríamos que todos los elementos de la tabla están compuestos internamente por las mismas partículas: protones y neutrones en el núcleo, y electrones orbitando alrededor en nubes de probabilidad. La diferencia entre los distintos elementos, además de las que se observan macroscópicamente, es la cantidad de protones que [...]

Si pudiéramos mirar un átomo por dentro, veríamos que todos los elementos de la tabla están compuestos internamente por las mismas partículas: protones y neutrones en el núcleo, y electrones orbitando alrededor en nubes de probabilidad. La diferencia entre los distintos elementos, además de las que se observan macroscópicamente, es la cantidad de protones que [...]

Si pudiéramos mirar un átomo por dentro, veríamos que todos los elementos de la tabla están compuestos internamente por las mismas partículas: protones y neutrones en el núcleo, y electrones orbitando alrededor en nubes de probabilidad. La diferencia entre los distintos elementos, además de las que se observan macroscópicamente, es la cantidad de protones que [...]

En 1828, Jöns Jacob Berzelius encontró un elemento y, en honor al dios griego Thor, lo llamó “torio”, el elemento más antiguo de la serie de actínidos. Casi cien años después, Pierre y Marie Curie descubrieron que era radiactivo. Los actínidos son, junto con los lantánidos, elementos de transición interna, también conocidos como ese bloque [...]

En 1828, Jöns Jacob Berzelius encontró un elemento y, en honor al dios griego Thor, lo llamó “torio”, el elemento más antiguo de la serie de actínidos. Casi cien años después, Pierre y Marie Curie descubrieron que era radiactivo. Los actínidos son, junto con los lantánidos, elementos de transición interna, también conocidos como ese bloque [...]

En 1828, Jöns Jacob Berzelius encontró un elemento y, en honor al dios griego Thor, lo llamó “torio”, el elemento más antiguo de la serie de actínidos. Casi cien años después, Pierre y Marie Curie descubrieron que era radiactivo. Los actínidos son, junto con los lantánidos, elementos de transición interna, también conocidos como ese bloque [...]

En 1828, Jöns Jacob Berzelius encontró un elemento y, en honor al dios griego Thor, lo llamó “torio”, el elemento más antiguo de la serie de actínidos. Casi cien años después, Pierre y Marie Curie descubrieron que era radiactivo. Los actínidos son, junto con los lantánidos, elementos de transición interna, también conocidos como ese bloque [...]

En 1828, Jöns Jacob Berzelius encontró un elemento y, en honor al dios griego Thor, lo llamó “torio”, el elemento más antiguo de la serie de actínidos. Casi cien años después, Pierre y Marie Curie descubrieron que era radiactivo. Los actínidos son, junto con los lantánidos, elementos de transición interna, también conocidos como ese bloque [...]

En 1828, Jöns Jacob Berzelius encontró un elemento y, en honor al dios griego Thor, lo llamó “torio”, el elemento más antiguo de la serie de actínidos. Casi cien años después, Pierre y Marie Curie descubrieron que era radiactivo. Los actínidos son, junto con los lantánidos, elementos de transición interna, también conocidos como ese bloque [...]

